The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis.
نویسندگان
چکیده
Increasing drought is one of the most critical challenges facing species and ecosystems worldwide, and improved theory and practices are needed for quantification of species tolerances. Leaf water potential at turgor loss, or wilting (π(tlp) ), is classically recognised as a major physiological determinant of plant water stress response. However, the cellular basis of π(tlp) and its importance for predicting ecological drought tolerance have been controversial. A meta-analysis of 317 species from 72 studies showed that π(tlp) was strongly correlated with water availability within and across biomes, indicating power for anticipating drought responses. We derived new equations giving both π(tlp) and relative water content at turgor loss point (RWC(tlp) ) as explicit functions of osmotic potential at full turgor (π(o) ) and bulk modulus of elasticity (ε). Sensitivity analyses and meta-analyses showed that π(o) is the major driver of π(tlp) . In contrast, ε plays no direct role in driving drought tolerance within or across species, but sclerophylly and elastic adjustments act to maintain RWC(tlp,) preventing cell dehydration, and additionally protect against nutrient, mechanical and herbivory stresses independent of drought tolerance. These findings clarify biogeographic trends and the underlying basis of drought tolerance parameters with applications in comparative assessments of species and ecosystems worldwide.
منابع مشابه
New insight into leaf drought tolerance
Drought-induced forest dieback appears to have increased in frequency over the last decade (Van Mantgem et al. 2009; Allen et al. 2010; Peng et al. 2011). These diebacks have occurred across a wide diversity of forest types, suggesting that no forest biome is invulnerable to climate change (Choat et al. 2012). However, drought-influenced mortality rates differ substantially between species grow...
متن کاملRapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point
1. Across plant species, drought tolerance and distributions with respect to water availability are strongly correlated with two physiological traits, the leaf water potential at wilting, that is, turgor loss point (ptlp), and the cell solute potential at full hydration, that is, osmotic potential (po). We present methods to determine these parameters 30 times more rapidly than the standard pre...
متن کاملLeaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conduct...
متن کاملGlobal analysis of plasticity in turgor loss point, a key drought tolerance trait.
Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or 'wilting' point (πtlp ). As soil dries, plants shift πtlp by accumulating solutes (i.e. 'osmotic adjustment'). We conducted the first global an...
متن کاملCauses of variation in leaf-level drought tolerance within an Amazonian forest
Amazonian tree communities have already been seriously impacted by extreme natural droughts, and intense droughts are predicted to increase in frequency. However, our current knowledge of Amazonian tree species’ responses to water stress remains limited, as plant trait databases include few drought tolerance traits, impeding the application and predictive power of models. Here we explored how l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology letters
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2012